Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The remarkable progress in artificial intelligence (AI) has ushered in a new era characterized by models with billions of parameters, enabling extraordinary capabilities across diverse domains. However, these achievements come at a significant cost in terms of memory and energy consumption. The growing demand for computational resources raises grand challenges for the sustainable development of energy-efficient AI systems. This paper delves into the paradigm of memory-based computing as a promising avenue to address these challenges. By capitalizing on the inherent characteristics of memory and its efficient utilization, memory-based computing offers a novel approach to enhance AI performance while reducing the associated energy costs. Our paper systematically analyzes the multifaceted aspects of this paradigm, highlighting its potential benefits and outlining the challenges it poses. Through an exploration of various methodologies, architectures, and algorithms, we elucidate the intricate interplay between memory utilization, computational efficiency, and AI model complexity. Furthermore, we review the evolving area of hardware and software solutions for memory-based computing, underscoring their implications for achieving energy-efficient AI systems. As AI continues its rapid evolution, identifying the key challenges and insights presented in this paper serve as a foundational guide for researchers striving to navigate the complex field of memory-based computing and its pivotal role in shaping the future of energy-efficient AI.more » « less
-
The tidal waves of modern electronic/electrical devices have led to increasing demands for ubiquitous application-specific power converters. A conventional manual design procedure of such power converters is computation- and labor-intensive, which involves selecting and connecting component devices, tuning component-wise parameters and control schemes, and iteratively evaluating and optimizing the design. To automate and speed up this design process, we propose an automatic framework that designs custom power converters from design specifications using Monte Carlo Tree Search. Specifically, the framework embraces the upper-confidence-bound-tree (UCT), a variant of Monte Carlo Tree Search, to automate topology space exploration with circuit design specification-encoded reward signals. Moreover, our UCT-based approach can exploit small offline data via the specially designed default policy and can run in parallel to accelerate topology space exploration. Further, it utilizes a hybrid circuit evaluation strategy to substantially reduce design evaluation costs. Empirically, we demonstrated that our framework could generate energy-efficient circuit topologies for various target voltage conversion ratios. Compared to existing automatic topology optimization strategies, the proposed method is much more computationally efficient—the sequential version can generate topologies with the same quality while being up to 67% faster. The parallelization schemes can further achieve high speedups compared to the sequential version.more » « less
An official website of the United States government

Full Text Available